Semi-rational approach for converting a GH1 β-glycosidase into a β-transglycosidase.
نویسندگان
چکیده
A large number of retaining glycosidases catalyze both hydrolysis and transglycosylation reactions, but little is known about what determines the balance between these two activities (transglycosylation/hydrolysis ratio). We previously obtained by directed evolution the mutants F401S and N282T of Thermus thermophilus β-glycosidase (Ttβ-gly, glycoside hydrolase family 1 (GH1)), which display a higher transglycosylation/hydrolysis ratio than the wild-type enzyme. In order to find the cause of these activity modifications, and thereby set up a generic method for easily obtaining transglycosidases from glycosidases, we determined their X-ray structure. No major structural changes could be observed which could help to rationalize the mutagenesis of glycosidases into transglycosidases. However, as these mutations are highly conserved in GH1 β-glycosidases and are located around the -1 site, we pursued the isolation of new transglycosidases by targeting highly conserved amino acids located around the active site. Thus, by single-point mutagenesis on Ttβ-gly, we created four new mutants that exhibit improved synthetic activity, producing disaccharides in yields of 68-90% against only 36% when native Ttβ-gly was used. As all of the chosen positions were well conserved among GH1 enzymes, this approach is most probably a general route to convert GH1 glycosidases into transglycosidases.
منابع مشابه
Rational design of a GH1 beta-glycosidase to prevent self-condensation during the transglycosylation reaction.
Mutant N282T of a thermostable beta-glycosidase from GH1 family (TtbetaGly) presenting a high transglycosidase activity was previously obtained by directed evolution. However, it displays a self-condensation activity with the donor 2-nitrophenyl-beta-d-galactopyranoside (oNPGal) which competes with the condensation reaction and entails undesirable effects. In order to prevent this reaction, we ...
متن کاملUsing the Amino Acid Network to Modulate the Hydrolytic Activity of β-Glycosidases
The active site residues in GH1 β-glycosidases are compartmentalized into 3 functional regions, involved in catalysis or binding of glycone and aglycone motifs from substrate. However, it still remains unclear how residues outside the active site modulate the enzymatic activity. To tackle this question, we solved the crystal structure of the GH1 β-glycosidase from Spodoptera frugiperda (Sfβgly)...
متن کاملSets of Covariant Residues Modulate the Activity and Thermal Stability of GH1 β-Glucosidases
The statistical coupling analysis of 768 β-glucosidases from the GH1 family revealed 23 positions in which the amino acid frequencies are coupled. The roles of these covariant positions in terms of the properties of β-glucosidases were investigated by alanine-screening mutagenesis using the fall armyworm Spodoptera frugiperda β-glycosidase (Sfβgly) as a model. The effects of the mutations on th...
متن کاملDesigning allosteric control into enzymes by chemical rescue of structure.
Ligand-dependent activity has been engineered into enzymes for purposes ranging from controlling cell morphology to reprogramming cellular signaling pathways. Where these successes have typically fused a naturally allosteric domain to the enzyme of interest, here we instead demonstrate an approach for designing a de novo allosteric effector site directly into the catalytic domain of an enzyme. ...
متن کاملOligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7
Psychrophilic enzymes evolved from a plethora of structural scaffolds via multiple molecular pathways. Elucidating their adaptive strategies is instrumental to understand how life can thrive in cold ecosystems and to tailor enzymes for biotechnological applications at low temperatures. In this work, we used X-ray crystallography, in solution studies and molecular dynamics simulations to reveal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Protein engineering, design & selection : PEDS
دوره 27 1 شماره
صفحات -
تاریخ انتشار 2014